METTLER TOLEDO

IND780axie Terminal and Axie-780 Application Software Technical Manual

www.mt.com

64061176 (10/07) R01

© METTLER TOLEDO 2007

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of METTLER TOLEDO.

U.S. Government Restricted Rights: This documentation is furnished with Restricted Rights.

Copyright 2007 METTLER TOLEDO. This documentation contains proprietary information of METTLER TOLEDO. It may not be copied in whole or in part without the express written consent of METTLER TOLEDO.

METTLER TOLEDO reserves the right to make refinements or changes to the product or manual without notice.

COPYRIGHT

METTLER TOLEDO[®] is a registered trademark of Mettler-Toledo, Inc. All other brand or product names are trademarks or registered trademarks of their respective companies.

CUSTOMER FEEDBACK

Your feedback is important to us! If you have a problem with this product or its documentation, or a suggestion on how we can serve you better, please fill out and send this form to us. Or, send your feedback via email to: <u>quality_feedback.mtwt@mt.com</u>. If you are in the United States, you can mail this postpaid form to the address on the reverse side or fax it to (614) 438-4355. If you are outside the United States, please apply the appropriate amount of postage before mailing.

Your Name:		Date:		
Organization Name:		METTLER TOLEDO Order Number:		
Address:		Part / Product Name:		
		Part / Model Number:		
		Serial Number:		
		Company Name for Installation:		
Phone Number: ()	Fax Number: ()	Contact Name:		
E-mail Address:		Phone Number:		
Please check the appropriate boy	to indicate how well this product r	net your expectations in its intended use?		
Met and exceeded my need	ds			
Met all needs				
Met most needs				
Met some needs				
Did not meet my needs				
Comments/Questions:				
DO NOT	WRITE IN SPACE BELOW; FOR	R METTLER TOLEDO USE ONLY		
Retail	Light Industrial	Heavy Industrial Custom		
RESPONSE: Include Root Cause	e Analysis and Corrective Action Ta	aken		

FOLD THIS FLAP FIRST

NO POSTAGE

NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 414 COLUMBUS, OH

POSTAGE WILL BE PAID BY ADDRESSEE

Mettler-Toledo, Inc. Quality Manager - MTWT P.O. Box 1705 Columbus, OH 43216 USA

Please seal with tape

METTLER TOLEDO RESERVES THE RIGHT TO MAKE REFINEMENTS OR CHANGES WITHOUT NOTICE.

FCC Notice

This device complies with Part 15 of the FCC Rules and the Radio Interference Requirements of the Canadian Department of Communications. Operation is subject to the following conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his or her expense.

Declaration of conformity is located on the IND780 Terminal documentation CD.

PRECAUTIONS

- READ this manual BEFORE operating or servicing this equipment and FOLLOW these instructions carefully.
- SAVE this manual for future reference.

WARNING!

FOR CONTINUED PROTECTION AGAINST SHOCK HAZARD CONNECT TO PROPERLY GROUNDED OUTLET ONLY. DO NOT REMOVE THE GROUND PRONG.

BEFORE CONNECTING/DISCONNECTING ANY INTERNAL ELECTRONIC COMPONENTS OR INTERCONNECTING WIRING BETWEEN ELECTRONIC EQUIPMENT ALWAYS REMOVE POWER AND WAIT AT LEAST THIRTY (30) SECONDS BEFORE ANY CONNECTIONS OR DISCONNECTIONS ARE MADE. FAILURE TO OBSERVE THESE PRECAUTIONS COULD RESULT IN DAMAGE TO OR DESTRUCTION OF THE EQUIPMENT AND/OR BODILY HARM.

OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES.

WARNING!

THE IND780 IS NOT DESIGNED FOR USE IN HAZARDOUS (EXPLOSIVE) AREAS.

🖄 WARNING!

WHEN THIS EQUIPMENT IS INCLUDED AS A COMPONENT PART OF A SYSTEM, THE RESULTING DESIGN MUST BE REVIEWED BY QUALIFIED PERSONNEL WHO ARE FAMILIAR WITH THE CONSTRUCTION AND OPERATION OF ALL COMPONENTS IN THE SYSTEM AND THE POTENTIAL HAZARDS INVOLVED. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY HARM AND/OR PROPERTY DAMAGE.

Contents

Chapter 1.0	Introduction	1-1
Overview		1-1
Software Featu	Jres	1-1
Model Identific	cation	1-2
Capabilities		1-3
Basic		1-3
Advanced .		1-3
Chapter 2.0	Operational Overview	2-1
Introduction		
Home Screen		2-1
Security		2-2
General INI	D780 Security	2-2
Axle-780 S	Security	2-2
Softkeys and I	cons	2-3
Modes of Ope	ration	2-4
Automatic	Mode	2-4
Manual Ma	ode	2-4
Chapter 3.0	Configuration	3-1
Installing the ⁻	Task Expert Application	3-1
Overview		3-1
Installing th	ne Software	3-2
Installing th	ne Hardware Key	3-3
Setup Mode		
Entering ar	nd Exiting Setup Mode	3-6
Accessing	Axle-780 Configuration Screens	3-7
Configuration	Options	
Application	> TaskExpert > Axle Setup	3-8
General		3-9
Traffic Cont	trol	3-11
Timer Cont	rol	
Discrete I/C) Setup	
Password .		
ID IdDle		51-3 حد د
		/ ۱-ک
Observer 4 0	Automatia Mada Waishing	
Unapier 4.0		
Automatic Mo	ae weighing	
Performing an Automatic Mode Transaction4-1		

Chapter 5.0	Manual Mode Weighing	5-1
Manual Mo	de Weighing	5-1
Performi	ng a Manual Mode Transaction	5-1
Using Re	eweigh	5-5
Chapter 6.0	Advanced Applications	6-1
Operation w	vith Overload Checking	6-1
Automat	ic Mode	6-1
Manual	Mode	6-3
Badge Read	der Setup	6-9
Manual Cor	ntrol of Lights	6-11
Gross Mode	e Operation	6-13
Appendix A	Default Settings	A-1
Setup Parar	neters	A-1
Output Tem	plates	A-3
Output Template 2		
Output T	emplate 3	A-5

Chapter 1.0

Overview

The IND780axle industrial terminal is a single- or multi-range, high performance weighing terminal for use with analog or METTLER TOLEDO[®] POWERCELL[®]/MTX[®] scale bases. The Axle-780 Application Software is a TaskExpert[™] application for weighing vehicles on a single-platform axle scale.

The Axle-780 Application Software has two modes of operation: Automatic (Unattended) and Manual (Attended).

Automatic Mode guides the truck though the weighing process using a threshold weight and timers. When the truck enters the scale, the entrance and exit lights turn red. Once motion stops on the scale, the weight is captured, and the exit light is changed to green. This process is repeated until all the axles are weighed. Upon exiting the scale, the operator then presses the PRINT button on the IND780 front-panel to print the transaction ticket. The transaction information is stored internally within the Transaction Table. When this feature is enabled, Manual Control of the lights allows an Automatic Mode transaction to be halted and controlled via Manual Control softkey.

In Manual Mode, the truck is guided through the weighing process by a series of prompts acknowledged by the operator. When the truck enters the scale, the entrance and exit lights turn red. Once motion stops on the scale, the weight is captured. A prompt then appears, which the operator must use the softkeys to acknowledge in order to continue. This process is continued until all the axles are weighed. The transaction information is stored internally within the Transaction table, and the ticket is printed.

Software Features

- Weighs vehicles with up to 12 axles
- Ability to select either Automatic (Unattended) or Manual (Attended) Mode of operation
- With the use of traffic lights, the driver is signaled when to stop and move forward
- Ability to set tolerances, thresholds, and timers via the Axle Setup branch

- Ability to flag overloads and control ticket printing for overloaded trucks
- Ability to reprint previous tickets
- Enter transaction ID via Truck ID (keyboard) or Badge ID (RFID badge reader)
- View and print all transactions via the Transaction Table in Axle Setup
- Ability to remotely download vehicle transaction via FTP to a PC

Model Identification

Figure 1-1 explains the model numbers used to define and identify the hardware and software configuration of an IND780.

Figure 1-1: Model Configuration Numbers

Capabilities

Basic

The Automatic and Manual weighing modes are outlined in Chapter 2 and described in detail in Chapters 4 and 5.

Advanced

Advanced applications – operation with overload checking, badge reader setup, manual control of lights and gross mode operation – are described in Chapter 6.

Chapter 2.0 Operational Overview

Introduction

This chapter provides an overview of operations that are specific to the IND780axle. Details on basic IND780 functionality may be found in the IND780 User's Guide and Technical Manual.

Home Screen

Figure 2-1 shows an IND780axle Home screen.

Security

General IND780 Security

The IND780axle supports the use of usernames and passwords for four levels of setup security. Refer to the IND780 **Technical Manual** Appendix B, **Default Settings**, to determine security levels assigned to specific parameters in setup.

 Administrator—An Administrator account has unlimited access to all areas of the operating and setup system. There can be multiple Administrator accounts. There is a Primary Administrator account, which can be changed but never deleted. The terminal is pre-configured at the factory with the Primary Administrator account with no password. The unit as configured at the factory requires no login or password entry to enter the setup mode. All functions of the terminal are available to all users until a password for the Primary Administrator account is set up.

When the Metrology switch is turned "on", all users with Administrator rights are reduced to the Maintenance level. This is done to protect metrologically significant parameters that cannot be changed when the terminal is "approved."

- Once a password is set up, be sure to remember it. If the password is changed or forgotten, access to the setup menu will not be available. Be sure to protect the password from access by unauthorized personnel. The password provides access to the entire setup menu, unless the metrology switch is placed in the approved position.
- **Maintenance**: Access is generally the same as the Administrator level with the exception of access to metrologically significant areas of the setup.
- **Supervisor**: Access is generally limited to editing tables and setting time and date.
- **Operator**—One default operator account is provided. Sites with validation requirements might create many operator accounts, each with a username and password entry requirement. The Operator-class of security is the most restrict-ive, allowing the user to use and view, but not change records within tables.

If a password has been programmed for the default Administrator username in Setup, and all other users have a password assigned, a login screen is presented whenever the Setup softkey is pressed. A valid username and password must be entered. Depending on the access level of the user logged in, setup screens may be visible only, or visible and available for modification. If a login fails, the display exits the login page and returns to the home screen.

Axle-780 Security

The Axle-780 application has its own login password protection, separate from the IND780 security settings that protect setup parameters. The Axle-780 login procedure is detailed in Chapter 3.0, **Configuration**.

Softkeys and Icons

Table 2-1 lists all icons specific to the IND780axle, i.e., those that are not available with the basic functionality version of IND780.

Icon	Function	Explanation
Axles 1 - 6	Axles 1-6	Displayed on Axle Weighing General screen; opens first Axle Thresholds settings screen.
Axles 7 - 12	Axles 7-12	Displayed on first Axle Thresholds settings screen; opens second Axle Thresholds settings screen.
I 💿 I	Go Light	Indicates light is showing Go/green
	Stop Light	Indicates light is showing Stop/red
I Sm	Manual Lights	Starts manual traffic control of lights or gates: Icon appears in position 3. UP/DOWN arrow keys switch control between Entrance and Exit.
\$	Switch Lights	When Manual Lights selected, appears as a softkey in position 3. Toggles state of lights on/off, or gates up/down
No	NO	During transaction, used to decline additional axles or to decline printing the transaction ticket
Yes	YES	During transaction, used to accept additional axles or to accept printing the transaction ticket
Re- Weigh	Reweigh	Available in Manual Mode only. During transaction, allows the operator to reweigh the current axle.
	Reprint	Reprints the most recent transaction, including "*DUPLICATE*" in the ticket heading. This softkey may be assigned to the runtime screen so that it is always available to the operator.

Table 2-1: Axle-780 Icons and Softkeys

Modes of Operation

Automatic Mode

In Automatic Mode, the truck is guided though the weighing process by the use of a threshold weight and timers. When the truck enters the scale, the entrance and exit lights turn red. Once there is no motion on the scale, the weight is captured, and the exit light changes to green. This process is repeated until all the axles have been weighed. Upon exiting the scale, the driver then pushes the PRINT button on the IND780 front-panel (or optional external keyboard) to print the transaction ticket. Transaction information is also stored internally within the Transaction Table.

Manual Mode

In Manual Mode, the truck is guided through the weighing process by a series of prompts acknowledged by the operator. When the truck enters the scale, the entrance and exit lights turn red. Once there is no motion on the scale, the weight is captured. A prompt then appears which the operator must use the softkeys to acknowledge before weighing can continue. This process is continued until all the axles have been weighed. Transaction information is stored internally within the Transaction table, and the ticket is printed.

Chapter 3.0 Configuration

Installing the Task Expert Application

Overview

Before the hardware key is installed and a master reset performed, the Axle-780 application files must be copied to the IND780's CF (Compact Flash) card. This may be performed in any of three ways:

- Using the InSite[™] configuration tool.
 - **Note**: InSite will not display the Axle-780 menu tree, since it is a Task Expert application.
- Through an FTP connection
- By removing the CF card and writing the files to it via a card reader.

Files and Hardware Required

The IND780AX (IND780AXTE) iButton is required – refer to **Installing the Hardware Key**, below.

The following files must be installed:

- AxlePac.cpt
- AxleSetup.cpt
- AxIScIThread.cpt
- FLASH.JDV

.

- Five bitmap files:
 - axles.bmp yes.bmp reweigh.bmp
 - axles1.bmp no.bmp

To load files via FTP

- 1. Use a web browser or ftp utility to connect via FTP to IND780 ftp://xxx.xxx.xxx.
- 2. Login to the IND780 File > Login As. The default username and password are admin, admin.

3. Once logged in to the ftp server, continue to Installing the Software, below.

To load files using a Compact Flash card reader

- 1. Power down IND780.
- 2. Open the case and remove the Compact Flash (CF) card.
- 3. Insert Compact Flash card into the card reader. The PC will automatically identify the card as a removable drive.
- 4. Open an Explorer window and locate the Compact Flash card on the PC.
- 5. Continue to Installing the Software, below.

Installing the Software

- 1. Either in ftp or using an Explorer window, navigate to /Terminal/JDD.
- 2. Create a new folder called OPT11.
- 3. Copy the FLASH.JDV file into the OPT11 folder created in the previous step.
- 4. Return to the root directory of the Compact Flash card.
- 5. Navigate to /TaskExpert/Programs.
- 6. Copy the following three .cpt files to the folder:
 - AxlePac.cpt
 - AxleSetup.cpt
 - AxIScIThread.cpt
- 7. Return to the root directory of the Compact Flash card.
- 8. Navigate to /Terminal/SKBMP/[COLOR or MONO].

NOTE: The name of the folder is based on IND780 display type.

- 9. Copy the following five bitmap files to the folder:
 - axles.bmp
 - axles1.bmp
 - yes.bmp
 - no.bmp
 - reweigh.bmp
- 10. Close the FTP session, or close the Explorer window.
- 11. Power down the IND780.
- 12. Continue to Installing the Hardware Key.
 - Note: Adding a new iButton (hardware key) requires a Master Reset. Refer to Installing the Hardware Key, below.

Installing the Hardware Key

Once the Axle-780 application software is installed on the Compact Flash card, the hardware key which enables Axle-780 functionality must be installed in a socket on IND780 Main PCB. Access to the Main PCB varies depending on whether the enclosure is the Panel Mount or Harsh model.

When the IND780 terminal is restarted after the hardware key is installed or removed, all configuration settings and files except metrologically significant scale data are restored to their factory defaults. Any information stored in user-configured tables such as targets and tare weights will be lost. This information can be saved by performing a Backup to USB operation before installing the hardware key. Refer to the Chapter 4 of the IND780 Technical Manual, Service and Maintenance, for the procedure to follow. Calibration data will not be affected.

To install the hardware key:

- 1. With power removed from the terminal, access the Main PCB:
 - A. For a Panel Mount unit, remove the four screws that fasten the back cover to the enclosure.
 - B. For a Harsh unit, remove the front panel using a flat blade screwdriver, as described in Chapter 6 (Installation) of the IND780 Technical Manual.
- 2. Identify the hardware key socket, adjacent to the Main PCB backup battery. The socket is indicated in **Error! Reference source not found.**.

Figure 3-1: Hardware Key Socket

3. Position the hardware key in the socket, label-side up. Press it down into the socket until the two retaining clips snap into position, as seen in **Error! Reference source not found.**.

Figure 3-2: Hardware Key Installed

- 4. Note that when the terminal is restarted, a Master Reset must be performed by holding down the Master Reset button (indicated in **Error! Reference source not found.**) when power is applied, until the terminal beeps.
- The Master Reset operation will not reset metrologically significant scale configuration data unless S2 (shown in its OFF position in Error! Reference source not found.) is in its ON position when the reset is performed.

Setup Mode

The setup menu of the IND780axle includes all the elements and functionality of the default configuration (detailed in Chapter 3 of the IND780 Technical Manual, **Configuration**), together with some additional or modified screens (Figure 3-3). The functions and parameters of each of the Task Expert screens are detailed in the Configuration Options section, immediately below. The remaining configuration changes – to Output Templates 2 and 3, and to Connections – are set in the Axle-780 application.

Figure 3-3: IND780 Menu Tree: Branches Specific to Axle-780

Entering and Exiting Setup Mode

To access the setup menu tree, press the DOWN or UP key, if necessary to display the appropriate row of softkeys, then press the SETUP softkey *.

If security is enabled (passwords have been assigned to the default Administrator and Operator), and no log-in is in effect, attempts to access setup will be met with a Login screen (Figure 3-4) that requires the entry of a valid user name and password. Depending on the access level of the login, setup screens may be visible only, or visible and modifiable.

IP=172.18.54.71	19/Feb/2007 13:11
Log	gin
Username	
Password	
	2
Esc	OK.

Figure 3-4: Log-In Screen

To leave setup and return to the home screen, either press the first (left-most) softkey while the menu tree is showing, or use the UP key to move focus to the Home branch and then press ENTER.

Accessing Axle-780 Configuration Screens

If a password is enabled (at Application > Task Expert > Axle Setup > Password), a password screen (Figure 3-5) appears when the Axle Setup screen is selected in the menu tree (Figure 3-3).

IP=172.18.4	9.55		27	/Feb/	2007	14:30
	Ax	le Setup				
Passw	ord					
			1			
ABCDEF	GHIJK	LMNOP	QR9	STU	VW3	XYZ
Esc	5	@!!	SP\$	# <u><</u> >	^_?	V

Figure 3-5: Axle-780 Login Password Screen

Once a correct password has been entered and the OK softkey \bigvee pressed, the Axle Weighing Setup screen (Figure 3-6) appears.

Configuration Options

- In the following sections, default values are indicated with an asterisk (*).
- Performing an Application > Reset restores Axle Weighing Setup parameters to their default values, but does **not** clear the ID or Transaction table. Each table can be cleared using the CLEAR softkey C on its Search screen.

Application > TaskExpert > Axle Setup

Because this setup menu was created in TaskExpert, it functions differently than the Standard IND780 Setup Tree. The Axle Setup branches (Figure 3-6) can only be selected by placing the focus on the desired branch and pressing the OK V softkey.

IP=172.18.49.55	07/Mar/2007 09:25
Axle We	ighing Setup
Axle Setup - General - Traffic Control - Timor Control	
- Timer Control - Discrete IO - Password - ID Table - Transaction Table	
	OK
	OK.

Figure 3-6: Access to Axle-780 Setup Screens

The features of each available screen are detailed in the following subsections.

General

The Axle Weighing General screen is shown in Figure 3-7.

P=172.18.54.71	19/Feb/2007 11:02		
Axle Wei	ghing General		
Mode	Automatic		
ID Input	Truck ID		
Overload Check	Disabled 🛛		
Gross Threshold	dl 00008		
ĸ	Axles		
	1-6		

Figure 3-7: Axle-780 General Setup Screen

Press the EXIT softkey 🔨 to return to the initial Axle Weighing Setup screen.

Settings and functions available in this screen are:

Mode	Manual, Automatic*
ID Input	None*, Truck ID, Badge ID
Overload Check	Disabled*, Yes; OK to Override, Yes; No Override
Gross Threshold	0-999999, 80000*

Mode sets the mode of operation for the Axle-780 – either Automatic or Manual. For specific operation of each mode, please refer to the **Automatic Mode Weighing** and **Manual Mode Weighing** Chapters (4 and 5) in this manual.

ID Input sets the type of input that is to be used during the transaction. When **None** is selected, no ID label and textbox will appear on the Runtime display. **Truck ID** is used to enter an ID manually via the IND780 front panel or an optional external keyboard. **Badge ID** is used to enter in an ID via an optional RFID badge reader.

Overload Check determines how the application will respond when an overload threshold has been exceeded. Selecting **Disabled** turns off the Overload Check. **Yes; OK to Override** is available only in Manual Mode operation. This option allows the operator to acknowledge the overload violation and either accept or ignore it during runtime operation. The transaction is stored in both cases, but the overload is only notated on the transaction ticket when the overload violation is accepted. **Yes; No Override** does not allow the operator to acknowledge the overload violation. The transaction ticket when the **overload violation** is accepted. **Yes; No Override** does not allow the operator to acknowledge the overload violation. The transaction will always be stored and notated on the transaction ticket. For more information about this function, refer to the **Operation** with **Overload Checking** section of Chapter 6, **Advanced Applications**.

Gross Threshold is the gross weight value used for comparison by the Overload Check during a transaction.

Axle Thresholds

The AXLES 1-6 softkey $\frac{A \times Ies}{1-6}$ opens the first of two Axle Thresholds screens (Figure 3-8). Note that, depending on the size of the scale platform used, an "Axle" defined on this screen may represent one or two actual axles.

IP=172.18.54.71	19/Feb/2007 10:27				
Axle Th	Axle Thresholds				
Axle 1 Threshold	12000 lb				
Axle 2 Threshold	34000				
Axle 3 Threshold	34000				
Axle 4 Threshold	34000				
Axle 5 Threshold	34000				
Axle 6 Threshold	34000				
~	Axles 7 - 12				

Figure 3-8: First Axle Thresholds Screen

The EXIT softkey \mathbf{K} returns the view to the Axle Weighing General screen.

Press the AXLES 7-12 $\frac{A \times les}{7 \cdot 12}$ softkey to access the second screen (Figure 3-9).

P=172.18.54.71		19/Feb/20	07 10:28
Axle	Threshold	is	
Axle 7 Threshold	34000		b
Axle 8 Threshold	34000		
Axle 9 Threshold	34000		
Axle 10 Threshol	d 34000		
Axle 11 Threshol	d 34000		
Axle 12 Threshol	d <u>34000</u>		
K			
•			

Figure 3-9: Second Axle Thresholds Screen

The EXIT softkey \mathbf{K} returns the view to the first Axle Thresholds screen (Figure 3-8).

Settings and functions available in these screens are:

Axle 1 Threshold	0-999999, 12000*
Axle 2 – 12 Thresholds	0-999999, 34000*

Axle Thresholds 1-12 are the threshold values for each axle. When the **Overload Check** is enabled (see Figure 3-7), each of these values is compared to the axle being weighed. If an overload is detected, that axle's weight appears on screen in bold and (on terminals with color screens) in red. In cases where both axles in a tandem configuration fit on the scale platform at the same time, the threshold is for the summed weight of the two and the "Axle" designated in the application is a virtual axle.

Traffic Control

The **Traffic Control** screen varies in its appearance, depending on which Control Type is selected. By default, Control Type is set to **None**, as shown in Figure 3-10. In this case, only the **Threshold**, **Excursion**, and **Zero Tolerance** parameters are available.

IP=172.18.54.71	19/Feb	/2007 12:59
Traffi	c Control	
Control Type	None	V
Threshold Excursion Zero Tolerance	1000.000000 1000.000000 500.000000]]
~		

Figure 3-10: Traffic Control Screen, No Control Enabled

Further options become available (Figure 3-11) when a Control Type is selected.

Settings and functions available in this screen are:

Control Type	None*, Lights/Weight
Enter Idle State [when Control = Lights/Weight]	Green/Up*, Red/Down
Exit Idle State [when Control = Lights/Weight]	Green/Up*, Red/Down
Threshold	0-999999, 1000*

IND780axle Terminal and Axle-780 Application Software Technical Manual

Excursion	0-999999, 1000*	
Zero Tolerance	0-999999, 500*	
Manual Control	Enabled, Disabled*	

[when Control = Lights/Weight]

Control Type determines the way in which vehicles are handled as they arrive at and leave the scale. When None is selected, no traffic control is in effect. The Lights/Weight setting uses scale output to control red and green lights at the scale's entry, its exit, or at both.

Enter Idle State and Exit Idle State set the state of the controls when a transaction is not underway.

The Threshold value is the weight above which a truck axle is assumed to be on the scale. The light controls are actuated once the value is exceeded.

The Excursion value is the amount the weight must change to indicate that the last axle has moved off the scale, or that an additional axle has come onto the scale.

Zero Tolerance is used in combination with the Zero Time Delay (see Figure 3-12, below). In order to minimize the number of false positives, the Zero Time Delay is used to delay the control signal. When the Zero Tolerance value is exceeded, the zero timer starts. If the scale is out of tolerance after the timer delay expires, then the controls are actuated to turn the lights to RED. A value of zero disables Zero Tolerance checking.

Timer Control

Options available in the Timer Control screen (Figure 3-12) vary, depending on which mode is selected in the General Page.

IP=172.18.54.71		19/Feb/2007 11:11
Tim	er Contro	bl
Excursion Timer	3.0	seconds
Exit Timer	9	seconds
Zero Time Delay	5	seconds
Light Timer	2	seconds
Print Timer	120	seconds
5		

Figure 3-12: Timer Control Screen, Automatic Mode Selected

Settings and functions available in this screen are:

Excursion Timer	0.1 - 10 seconds, 3 seconds*
Exit Timer	5-100 seconds, 9 seconds*
Zero Time Delay	0-99 seconds, 5 seconds*

Light Timer [When Mode = Automatic]	1-20 seconds, 2 seconds*	
Print Timer [When Mode = Automatic]	0-200 seconds, 120 seconds*	

The **Excursion Timer** sets the amount of time the program will wait between seeing a change in the **Excursion Weight** (see Traffic Control, above) and checking for the next axle on the scale. If the weight on the scale is below the threshold after the excursion time is exceeded, it is assumed that there are no more axles, and the Exit Timer is started.

The **Exit Timer** sets the amount of time the weight must be below the threshold before the system assumes the truck is off the scale.

Zero Time Delay is used in conjunction with the **Zero Tolerance** setting (see Traffic Control, above). In order to avoid setting the lights to red unnecessarily, it sets a delay in sending the control signal when zero tolerance is exceeded. If the scale is out of tolerance after the timer delay expires, then the controls are actuated.

Light Timer is the amount of time the RED light will remain turned on for each axle weightment.

Print Timer is the amount of time the Axle-780 application will wait for the driver to initiate a ticket print. If the Print Timer time elapses, the scale will reset without printing a ticket. If the Print Timer is set to a value of zero (0) seconds, Axle-780 will automatically print the ticket after the transaction is stored.

Discrete I/O Setup

The Discrete IO Setup screen is shown in Figure 3-13.

IP=172.18.5	54.71		19/Feb/	2007 10:35
	Disc	rete IO S	Setup	
Discre	ete IO	Local	V	
		20001		
5				
· · ·				

Figure 3-13: Discrete I/O Setup Screen

In this screen, the discrete outputs for the lights can be set to be controlled either by an internal Discrete I/O option card (Local*) or by an ARM100 Remote Discrete I/O Module (Remote). The following connection addresses are static connections and should not be modified via the standard IND780 setup screens. Changes made to these settings will be over-written by the Axle-780 application.

Local	Remote
0.5.1 – Entrance Red	1.0.1 – Entrance Red
0.5.2 — Entrance Green	1.0.2 – Entrance Green
0.5.3 – Exit Red	1.0.3 – Exit Red
0.5.4 – Exit Green	1.0.4 – Exit Green

Example: Address 0.5.1 = Local Discrete IO board, slot 5, output 1.

Password

The Password setup screen is shown in Figure 3-14.

IP=172.18.54.71 Pas	19/Feb/2007 12:58 sword
Login Password	Disabled
New Password Confirm Password	
N	ok.

Figure 3-14: Password Setup Screen

Settings and functions available in this screen are:

Login Password	Enabled, Disabled*	
New Password	8 alphanumeric characters	
Confirm Password	8 alphanumeric characters	

When enabled, **Login Password** requires the operator to login to the Axle Setup. This password is specific to the Axle-780 application, and separate from the standard IND780 setup security.

New Password is used to overwrite an existing password.

Confirm Password checks to make sure the two values are the same. Once OK is pressed, the two passwords are compared. If there is a discrepancy, a "Passwords Do Not Match" message will appear. The operator can then re-enter both passwords to correct the error.

ID Table

The ID Table is used to store RFID Badge data. If the ID Input mode is set to Badge ID, during runtime, this ID Table is searched for the ID Badge Number. If the number does not exist, an error message will appear on the display. If the number does exist, the Badge ID will appear on the display, and the driver can continue with the transaction.

Note: To avoid delays in searching the ID Table, no more than 1,500 IDs should be stored.

ID Table Search

Figure 3-15 shows the ID Table/Search screen.

IP=172.18.54.72	(Table/Searc	01/Mar/2007 15:38 : h
Search Field	None	V
Data	= 🔻 *	
Sort By	None	V
	Descend	V
5	ĴŬĴ	С

Figure 3-15: ID Table Search Screen

Settings and functions available in this screen are:

Search Field	None*, Bade ID, Badge Number
Data	Specifies operation to be performed on entered data - < (less than), <= (less than or equal to), =* (equal to), >= (greater than or equal to), > (greater than)
Data Field	Alphanumeric entry field
Sort By	Same as Search Field
[Sort By order]	Ascend, Descend*
С	After a warning prompt. clears the ID table

ID Table View and Print

Once the data have been filtered using the search screen, pressing the VIEW TABLE softkey **D** opens the screen shown in Figure 3-16.

IP=172.18.	54.72				01/Mar	/2007	15:3
Badge ID		Badg	ge Num	ber			·
-							
		>			0		
					$\leq l$		3
	-						

Figure 3-16: ID Table View Screen

From this screen, badge IDs may be edited \swarrow , created \bigcap , erased \swarrow and printed \blacksquare .

Figure 3-17 shows the ID New screen, where Badge ID and Number data can be entered. The Badge ID must be entered manually. The Badge Number can either be entered manually, or the badge can be read into the field by the badge reader.

The new ID fields are defined as follows:

Badge ID	16 alphanumeric characters: The identifier associated with the badge number. This ID is printed on the transaction ticket.
Badge Number	16 alphanumeric characters: The unique identifier for the badge itself.

Figure 3-17 (left) shows the ID New screen with data entered. Pressing OK $\stackrel{\text{OF}}{\longrightarrow}$ in this screen saves the badge to the ID table (right).

IP=172.18.54.72	02/Mar/200	17 13:57	IP=172.18.5	54.72	02/Mar/2007-13:
ID New			Badge ID	Badge Nur	nber
			12345	554466884	121123
Badge ID	12345				
Padga Numbar	55440000404400	_			
Bauge Number	00446666421123				
_			-		
		ok.			1 🖉 🚍
•		•	•		

Figure 3-17: ID New Screen
Transaction Table

Transaction Table Search

Figure 3-18 shows the Transaction Table / Search screen.

IP=172.18.54.71	19/Feb/2007 13:32				
Transac	Transaction Table / Search				
Search Field	None				
Data	= 🔻 *				
Sort By	None				
	Descend V				
_					
	0#03 C				

Figure 3-18: Transaction Table / Search Screen

Settings and functions available in this screen are:

Search Field	None*, Transaction, ID, O/L, Date, Time		
Data	Specifies operation to be performed on data entered in the adjacent alphanumeric field:		
	< (less than), <= (less then or equal to), =* (equals), <> (not equal), >= (greater than or equal to), > (greater than)		
Sort By	Same as Search Field		
[Sort By order]	Ascend, Descend*		

Softkeys in this screen function as follows:

<u> </u>	Exit	Returns to the Axle Weighing Setup screen (Figure 3-6)
ĴÛ	Search	Opens the Transaction Table View screen (Figure 3-19)
С	Clear	Opens a warning screen and, if OK pressed, clears the transaction table

Transaction Table View and Print

The Transaction Table stores a record of all transactions. The following data are included in each record:

Transaction	Sequential number identifying the transaction			
ID	Alphanumeric string from the Vehicle ID field displayed during the transaction			
Date	Date on which the transaction was performed			

IND780axle Terminal and Axle-780 Application Software Technical Manual

Time	Time at which the transaction was performed	
0/L	Indicates whether transaction included one or more axles with weight overloads	
Gross	Calculated gross weight of the truck	
Unit	Weight unit for the transaction	
Axles 1-12	Individual axle weights	

Figure 3-19 shows the initial Transaction Table View screen, together with a series of partial screens showing further columns of data visible. The IND780's arrow keys can be used to move through the rows and columns of data.

IP=172.18	3.54.8	4					21/F	eb/200	07 16:2	23
Transacti	onID			D	ate		Ti	me	0/L	-
48	MT	1		2	1/Fe	b/200	11	6:22:42	2 No	
				Ŧ						
				ŧ						
-				3			C			4
5								é		
Gross	Ur	nit	Axle	91		Axle :	2	Axle	3	4
76180	lb		103	40		1702	0	1700	0	2
0									-	ŝ
0								-		1
0	+	-	\vdash		-			+		ŝ
9										1
8		-	+		_			-	_	
4	-		-	14	â			<u>.</u>		
xle 3 Axle 4 7000 14980	Axle 5 16840	Axle 6 0	Axle 7		9.8	Axie 9 0	Axie 10 0	Axie 11 0	Axte 12	
			-	_			_			
					_	-	+			
					4					

Figure 3-19: Transaction Table View Screens

When the PRINT softkey is pressed, a report is printed that includes all transactions selected in the Search screen (Figure 3-18). Figure 3-20 shows an example of a printed Transaction report.

A "yes" in the O/L (Over Load) column indicates that one or more axles exceeded the permitted maximum; the overall gross weight may or may not be excessive.

Transaction Report							
Trans#	ID	Date	Time	0/L	Gross	Unit	
48	MT1	21/Feb/2007	16:22:42	No	76180	lb	
49	METTLER 5	22/Feb/2007	08:47:33	No	77840	lb	
50	METTLER 6	22/Feb/2007	09:01:15	Yes	79560	1b	

Figure 3-20: Sample Transaction Report

Connections

The necessary Axle-780 connections can be configured using the standard IND780 setup screen, at Communications > Connections. By default, the following two connections are created:

- COM1, Demand Output, Trigger 1, Template 2
- COM1, Demand Output, Trigger 2, Template 3

Trigger 1 is used to print the Axle ticket. Trigger 2 is used for printing the Gross Mode ticket.

Chapter 4.0

Automatic Mode Weighing

Automatic Mode Weighing

To use this function, the Mode (selected on the Axle Weighing General setup screen) must be set to Automatic. This is the default mode.

Automatic Mode weighing is used for unattended axle weighing. The Threshold and Excursion weight values, together with the various timers, are used to guide the truck through the weighing process.

Performing an Automatic Mode Transaction

Figure 4-1 shows the idle state Axle Runtime display, with Lights/Weight and Truck ID selected. This idle state remains until a truck enters the scale.

Figure 4-1: Axle Runtime Display, Idle

An ID can be entered throughout the transaction. However, if no ID is entered after the last axle is weighed, the focus will be placed on the ID field (Figure 4-2). The drive can then either key in the ID (using the numeric keypad or the softkeys in their alphanumeric mode) or press ENTER to ignore the ID and complete the transaction.

Figure 4-2: ID Entry

Once the Threshold value is exceeded, the lights turn RED. When motion stops on the scale, the weight is captured and displayed (Figure 4-3). As the individual axle weights are captured, the gross weight is incremented.

Figure 4-3: First Axle Weight Displayed

After the first axle weight is captured, the softkeys change. In this instance, only one softkey is now available. The ESC softkey allows for the transaction to be halted and then cleared if desired.

Note: If Manual Control is enabled in the Traffic Control setup screen, the MANUAL LIGHTS softkey a will appear on the runtime display once the first axle weight is captured (Figure 4-4). This permits the state of the traffic control lights to be changed by the operator, without ending or otherwise affecting the ongoing transaction.

Figure 4-4: Manual Mode Softkey Displayed

If the ESC softkey (Esc) is pressed, a "Clear Scale?" prompt appears (Figure 4-5) with ESC and OK softkeys showing:

ok∙

Releases the vehicle currently on the scale abandons the transaction. The display will be cleared and return to its idle state.

(Esc) Allows the transaction to be continued from its current state.

IP=172.18.54.84	118	800	1/Feb/20 Ib B/G S	007 10:43 cale 1
e I	Ai I I	kle 1	11800	
IDClear Scale?	c	Foss	1180	dl 0(
Esc				ok.

Figure 4-5: ESC Pressed, Clear Scale Prompt Showing

After the first axle weight is captured, the exit light changes to signal the driver to move on to the next axle. Figure 4-6 shows a transaction after the steering, drive tandem, and trailer tandem axles have been weighed. The application is signaling the driver to continue on to the next axle.

IP=172.18.54.84	21/Feb/2007 11:4 33760 ^{Ib} B/G Scale 1
t € I I	Axde 1 11880 Axde 2 33860 Axde 3 33760
METTLER 2	_ Gross 79500 ⊯
Esc	

Figure 4-6: Multiple Axles Weighed

In this case, though, there are no more axles, and the Exit Timer will start once the weight goes below Threshold. Once the Exit Timer expires, the transaction will be saved (Figure 4-7). All the transactions are stored in the Transaction Table.

IP=172.18.54. >0<	84	00	21/Feb/2007 Ib B/G Sca	7 11:45 ale 1
E	e le	Axle 1 Axle 2 Axle 3	11880 33860 33760	
ID METT	LESavin	g Transa Gross	ction 79500	lb
Esc				

Figure 4-7: Transaction Completed, "Saving" Prompt Showing

After the transaction has been saved, the Print Timer starts and waits (Figure 4-8) for the PRINT key is not pressed and the Print Timer expires, the application will reset without printing a ticket.

IP=172,18.54.1	34	00	21/Feb/2007 11:4
↓ I	e I I	Axle 1 Axle 2 Axle 3	11880 33860 33760
D METT	LEFPress	PRINT	79500 lb
Esc		Î	

Figure 4-8: Transaction Completed, Waiting for Print Button Push

Once the PRINT key is pressed, a message appears (Figure 4-9) notifying the driver that the application is in the process of printing.

Figure 4-9: Print Key Pressed, "Printing in Progress" Prompt Showing

Figure 4-10 shows two examples of printed tickets, the second generated by pressing the REPRINT softkey *(*

	DUPLICATE
22/Feb/2007 08:50:39	22/Feb/2007 08:50:39
Transaction: 49	Transaction: 49
ID: METTLER 5	ID: METTLER 5
Axle 1: 10720 Axle 2: 17460 Axle 3: 15660 Axle 4: 16580 Axle 5: 17420 Axle 6: 0 Axle 6: 0 Axle 7: 0 Axle 7: 0 Axle 8: 0 Axle 9: 0 Axle 10: 0 Axle 11: 0 Axle 12: 0	Axle 1: 10720 Axle 2: 17460 Axle 3: 15660 Axle 4: 16580 Axle 5: 17420 Axle 6: 0 Axle 6: 0 Axle 7: 0 Axle 8: 0 Axle 9: 0 Axle 9: 0 Axle 10: 0 Axle 11: 0 Axle 12: 0
Gross: 77840 lb	Gross: 77840 lb

Figure 4-10: Printed Tickets: Original (left), Reprint (right)

At this point, the transaction is complete and the traffic controls return to their idle state, as specified in the Axle Weighing General setup screen.

Chapter 5.0 Manual Mode Weighing

Manual Mode Weighing

To use this function, the Mode (selected on the Axle Weighing General setup screen) must be set to Manual.

Manual Mode weighing is used for attended axle weighing. The Threshold and Excursion weight values, along with prompts acknowledged by the operator, are used to guide the truck through the weighing process.

Performing a Manual Mode Transaction

Figure 5-1 shows the idle state Axle Runtime display, with Lights/Weight and Truck ID selected. The application remains in this idle state until a truck enters the scale.

Figure 5-1: Axle Runtime Display, Idle

An ID can be entered throughout the transaction. However, if no ID is entered after the last axle is weighed, the ID field will be put in focus. The driver can now either key in the ID (using the numeric keypad or the softkeys in their alphanumeric mode) or press ENTER to ignore the ID and complete the transaction.

Once the Threshold value is exceeded, the lights turn red. When motion stops on the scale, the weight is captured and displayed. As the individual axle weights are captured, the gross weight (at lower right) is incremented.

In Manual Mode, new softkeys appear to give the operator flexibility throughout the transaction. After the axle weight is captured and displayed (just below the live weight display), a prompt appears (Figure 5-2) asking the operator if there is another axle.

Figure 5-2: "Another Axle?" Prompt

The softkeys displayed in this screen function as follows:

Esc	When pressed, a "Clear Scale?" prompt appears with ESC (Esc) and OK V softkeys. If ESC is pressed, the transaction continues from its previous state. Pressing OK releases the vehicle currently on the scale and abandons the transaction. The display will be cleared and return to its idle state.
Re- Weigh	Used when there is a discrepancy between the "live" weight on the display versus the displayed axle weight. When pressed, the application captures the weight again, updating the axle weight and gross weight on the display. Refer to Using Reweigh on page 5-5.
No	Signals the application that there are no more axles, begins to complete the transaction.
Yes	Signals the application that there is another axle. The light switches to GREEN to notify the driver to move ahead.

Figure 5-3 shows the screen after the YES softkey has been pressed, with the green light showing.

Figure 5-3: Green Light Instructing Driver to Move to Next Axle

The transaction in this example is continued through two further weighments. In Figure 5-4, the drive tandem and trailer tandem axles have been captured, and all three axle weighments are displayed on screen, just below the "live" weight display.

Figure 5-4: All Axles Weighed

At this point, pressing the NO softkey signals the application that there are no more axles to weigh. The application saves the transaction (Figure 5-5).

IP=172.18.	54.84		21/Feb/	2007 15:13
		227/	∩⊫	
		JU 1 9	VB/G	Scale 1
	æ	Axle	1 1142	20
Tel l		Axle :	2 3388	30
Ĩ	Ĩ	Axle :	3 3374	10
		_		
ID ME	ITTLE Sav	ring Tran	saction	140 lb
		010	33 730	
Esc	Re- Weigh	No		Yes

Figure 5-5: "Saving Transaction" Prompt

Once the transaction has been saved, the application prints the ticket (Figure 5-6).

Figure 5-6: "Printing in Progress" Prompt

With the transaction saved and the ticket printed, the exit light changes to green (Figure 5-7) to notify the driver to move ahead and exit the scale.

IP=172.18.	54.84		21/Feb/	2007 15:13
		3374		Scolo 1
↓ I	e e e e e e e e e e e e e e e e e e e	Axle Axle Axle	1 1142 2 3388 3 3374	20 20 40
ID ME	TTLER 3	Gro	ss 790)40 lb
Esc	Re- Weigh	No		Yes

Figure 5-7: Transaction Complete, Green Light Instructing Driver to Exit Scale

After the truck exits the scale, the application returns to its idle state (Figure 5-1).

Using Reweigh

Reweighing is available in the Manual Mode only. It gives the operator the ability to reweigh an axle if the weight was captured and the truck readjusted its position, creating a discrepancy between the captured weight and the live weight.

In Figure 5-8, it can be seen that the captured weight does not equal the "live" weight on the scale. This can be adjusted by pressing the REWEIGH softkey.

Figure 5-8: Live Weight Different from Captured Weight

In Figure 5-9, the REWEIGH softkey has been pressed, updating the captured Axle 1 weight and the Gross weight. After this adjustment, the YES softkey is pressed and the transaction continues as normal.

IP=172.18.	54.84		22/Feb	/2007 13:30
		1136	0 ^{Ib} B/G	Scale 1
e I	e e e e e e e e e e e e e e e e e e e	Axle	1 113	60
ID ME	TTLER 7	Gro	oss 11:	3 60 lb
Esc	Re- Weigh	No		Yes

Figure 5-9: Captured and Gross Weights Corrected

Chapter 6.0 Advanced Applications

Operation with Overload Checking

Three modes of Overload Checking are available in Axle Setup: **Disabled**, **Yes**; **OK to Override** (in Manual Mode only), and **Yes**; **No Override**. The Overload Checking enables the operator to track individual overweight axles as well as an overweight gross load throughout the transaction. The sequence of illustrations below demonstrates how overload checking is used in both Automatic and Manual Modes of operation.

- When overload checking is enabled, the overload violation is recorded in the transaction table.
- In each of the following examples, the default axle threshold values are used:
 - Gross: 80000 lb Axle 1: 12000 lb Axle 2: 34000 lb Axle 3: 34000 lb

Automatic Mode

Overload Check - Yes; No Override

When the **Overload Check** is set to **Yes; No Override**, and one of the axle or gross weight thresholds are exceeded, the driver receives a prompt at the end of the transaction that must be acknowledged to continue. The transaction is printed with *OVERLOAD VIOLATION* at the top of the ticket, and each overloaded axle is marked O/L.

In Figure 6-1, the entire truck has been weighed, and the application is now waiting for the truck to exit. The overweight value is displayed in **bold red** (IND780 color display only – **bold** only in monochrome). It can be seen from the display that Axle 2 (tandem drive axles) is overweight.

Figure 6-1: Axle Overload Displayed

Once the truck exits the scale, the transaction is stored (Figure 6-2).

Figure 6-2: Saving Transaction

After the transaction is stored, a prompt appears notifying the driver to press PRINT to print the transaction ticket (Figure 6-13).

If one or more axles had gross weights in excess of the values configured in the Axle Thresholds setup screens, the printed tickets appear with headers, and O/L indications beside the overloaded axle/s, as shown in Figure 6-3.

Gross: 79560 lb	Gross: 79560 lb
ID: METTLER 6	ID: METTLER 6
Axle 1: 11880	Axle 1: 11880
Axle 2: 33300	Axle 2: 33300
Axle 3: 34380 0/L	Axle 3: 34380 0/L
Axle 4: 0	Axle 4: 0
Axle 5: 0	Axle 5: 0
Axle 5: 0	Axle 5: 0
Axle 6: 0	Axle 6: 0
Axle 6: 0	Axle 7: 0
Axle 7: 0	Axle 7: 0
Axle 8: 0	Axle 8: 0
Axle 9: 0	Axle 8: 0
Axle 9: 0	Axle 9: 0
Axle 10: 0	Axle 10: 0
Axle 11: 0	Axle 11: 0
Axle 12: 0	Axle 12: 0
OVERLOAD VIOLATION	*DUPLICATE*
22/Feb/2007	*OVERLOAD VIOLATION*
09:01:20	22/Feb/2007
Transaction: 50	09:04:32

Figure 6-3: Printed Tickets with Overload Condition: Original (left), Reprint (right)

Manual Mode

Overload Check - Yes; OK to Override

When the **Overload Check** is set to **Yes; OK to Override**, and one of the axle or gross weight thresholds are exceeded, the driver is prompted to either accept or ignore the overload violation.

- If the overload violation is accepted, the operator will be given the prompt "Print Transaction?" after the transaction is stored.
 - 1. If the operator chooses to print the transaction, "Overload Violation" is printed at the top of the ticket. The overloaded axle or gross weight is notated on the ticket with the designation O/L.
 - 2. If the operator chooses not to print, the transaction is completed and it returns to the idle state without printing.
- If the overload violation is not accepted (ignored), the exceeded axle or gross weight will change from bold red to normal black font, and the transaction ticket is printed without "Overload Violation" printed at the top.

Note: If the operator chooses to override the overload violation, the violation will not appear in the transaction table.

Accepting an Overload Violation

In the figure below, the steering and tandem drive axles have been captured. It can be seen that the tandem drive axles (Axle 2) has exceeded the axle threshold. The overweight value is displayed in **bold red** (IND780 color display only – **bold** only in monochrome).

Once this threshold has been exceeded, a prompt appears (Figure 6-4) asking the operator to either accept or decline the overload violation. In this example, **Yes** is pressed to accept the overload violation.

Figure 6-4: Accept Overload?

After **Yes** is pressed, the transaction continues by asking the operator if there is another axle (Figure 6-5). Yes is pressed again to continue with an additional tandem axle weightment.

Figure 6-5: Another Axle?

After the last axle is captured, **No** is pressed to end the transaction. The transaction is saved to the Transaction Table after the last axle has been weighed.

Since the overload violation was accepted, the operator has the choice either to print the transaction ticket or to decline a ticket (Figure 6-6).

Figure 6-6: Print Transaction?

Yes was pressed, causing the transaction ticket to be printed (Figure 6-13).

After the ticket is printed, the light changes to GREEN (Figure 6-7) and the system waits for the truck to exit the scale.

Figure 6-7: Truck Ready to Leave Scale

Ignoring an Overload Violation

In Figure 6-14, the steering and tandem drive axles have been captured. It can be seen that the tandem drive axles (Axle 2) hav exceeded the axle weight threshold. The overweight value is displayed in **bold red** (IND780 color display only – **bold** only in monochrome).

Once this threshold has been exceeded, a prompt appears asking the operator to either accept or decline the overload violation. In this example, **No** is pressed to accept the overload violation.

Figure 6-8: Axle over Threshold Prompt

After **No** is pressed, the axle displayed weight changes from **bold red** to normal black (Figure 6-14).

IP=172.18.54.74	3490	30/Mar/	2007 12:59 Scale 1
	Axie Axie	1 1168 2 3490	30)0
ID MT35 Another Axle?	Gro	ss 465	dl 08
Esc Re- Weigh	No		Yes

Figure 6-9: Overload Accepted, Weight Display Reset

Because the overload violation has been ignored, there will be no prompt at the end of the transaction to print. The transaction continues through normal operation. However, if before the end of the transaction, either another axle or the gross weight thresholds are exceeded, the operator must acknowledge the same prompts again.

Overload Check - Yes; No Override

When the **Overload Check** is set to **Yes; No Override**, and one of the axle or gross weight thresholds are exceeded, the operator receives no prompting.

In the figure below, the steering, tandem drive, and tandem trailer axles have been captured. It can be seen that the tandem trailer axles (Axle 3) has exceeded the axle threshold. The overweight value is displayed in **bold red** (IND780 color display only – **bold** only in monochrome).

Notice that, in this scenario, no prompt appears to allow the operator to acknowledge the overload violation. The process moves directly to the Another Axle? prompt (Figure 6-10).

Figure 6-10: Another Axle?

Since there are no more axles, **No** is pressed to end the transaction. A prompt appears (Figure 6-11) indicating that one of the thresholds was exceeded.

IP=172.18.	54.72	2101	27/Feb/	2007 15:58		
e I I	e I	Axle Axle Axle	VB/G 1 1162 2 3362 3 342	Scale 1 20 20 40		
ID METTLER 10 Gross 79480 Ib Overload Violation!						
Esc	Re- Weigh	No		Yes		

Figure 6-11: Overload Violation Prompt

The transaction is saved to the Transaction Table (Figure 6-12).

IP=172.18.	54.72	3424	27/Feb/	2007 15:58
	ETTLE <mark>Sav</mark>	Axle Axle Axle	B/G 3 1 1162 2 3362 3 342 5 342	40 80 80 80 80 80 80 80 80
Esc	Re- Weigh	No		Yes

Figure 6-12: Saving Transaction

Finally the transaction ticket is printed (Figure 6-13).

Figure 6-13: Printing in Progress and Printed Ticket Showing Overload Violation

After the ticket is printed, the exit light changes to GREEN and waits for the truck to exit (Figure 6-14).

Figure 6-14: Truck Ready to Leave Scale

Badge Reader Setup

The following steps must be performed if an optional RFID Badge Reader is to be used:

 Create an ASCII Input in the IND780 Setup (at Communication > Connections) using one of the available COM ports. Figure 6-15 shows the Connection Edit screen with a new connection being configured, and Figure 6-16 the Connections view screen showing the new input.

IP=172.18.54.84		23/Feb/.	2007 15:29					
Cor	Connection Edit							
Port	COM	2	•					
Assignment	ASC	ll Input	•					
Esc			OK.					
			\checkmark					

Figure 6-15: Creating an ASCII Input Connection

IP=172.18.54.84 23/Feb/2				2007 15	:29			
	Connections							
	Port	Assignme	ent	Trigger		Te		
	COM1	Demand O	utput	Trigger 1		Ter		
•	COM2	ASCII Input	ASCII Input					
	ς.				С			
	•				•			

Figure 6-16: Connections View Screen, ASCII Input Configured

 Set the Input Template parameters for the incoming ASCII message specific to the device. The Assignment parameter must be set to Application (Figure 6-17). For more information on the Input Template setup, please see the IND780 Technical Manual, Chapter 3.0, Configuration.

IP=172.18.54.72		26/Feb/2007 11:22					
Input Template							
Preamble Length	0]					
Data Length	5]					
Postamble Length	n 0]					
Termination Char	CR	-					
Assignment	Applic	cation 💌					
ĸ							

Figure 6-17: Input Template Configuration Screen

3. In the Axle Weighing General setup screen, set the ID Input parameter to Badge ID (Figure 6-18).

IP=172.18.54.84 23/Feb/2007 15:31 Axle Weighing General						
Mode	Auto	matic	V			
ID Input	Bado	ge ID	▼			
Overload Check	Yes;	Yes; OK to Override 🔻				
Gross Threshold	1 8000)0	lb			
N			Axles 1 - 6			

Figure 6-18: Setting ID Input in Axle Weighing General Screen

4. Once the Runtime screen is displayed, notice that the ID textbox has now been changed to a message (Figure 6-19). During the transaction, after the badge is scanned the ID appears on the display.

IP=172.18.5 >0<	54.84	(3/Feb/2 I <mark>b</mark> B/G S	2007 15:32 Scale 1
↓ I	← I				
🔲 Sca	in badge	Gr	055	00	dl
D	21				v

Figure 6-19: Runtime Screen with Scan badge... Prompt

5. If a badge is scanned and the Badge Number located in the ID Table, the Badge ID will be displayed on screen (Figure 6-20), and also printed on the transaction ticket as the transaction ID.

P=172.18.54.72	20 ^{1/Mar/2007 14:06} B/G Scale 1
∎ 12345	Gross 00 lb
Q	

Figure 6-20: Runtime Screen, ID Read and Displayed

- 6. If a badge is scanned that cannot be located in the ID Table, a message will appear asking the driver to try again (Figure 6-21).
 - **Note:** In order to be accessible during runtime, all badge IDs must be entered via the ID Table configuration screen, accessed in Axle Setup refer to Chapter 3, **Configuration**.

		20	B/G So	ale 1
Scar D Not Four	n badge nd. Try Agair	Gross	00	lb

Figure 6-21: Runtime Screen with ID Not Found Prompt

Manual Control of Lights

Manual Control of Lights gives the operator the ability to interrupt an Automatic Mode transaction. Once the transaction is interrupted, though, the operator must manually guide the truck through the rest of the transaction.

Note: To enable manual control of lights, the Control Type must be set to Lights/Weight – refer to Chapter 3, **Configuration**.

1. If Manual Control is enabled, once an Automatic Mode transaction has begun (the first axle captured on the scale), the Manual Control softkey appears (Figure 6-22).

Figure 6-22: Runtime Screen, Manual Control Softkey Showing

2. Pressing the Manual Control softkey interrupts the transaction, and gives the operator control over the sequence. Notice that the softkey changes (Figure 6-23) to indicate that the operator can use it to toggle the state of the selected light.

Figure 6-23: Manual Control Softkey Ready to Change Lights

3 Initially, the exit light is in focus, indicated by the box around its icon. Press ENTER or the UP/DOWN arrow keys to change focus to the other light (Figure 6-24).

Figure 6-24: Changing Focus Between Lights

4 Once the light changes to GREEN, the application looks for a change in the Excursion Weight. Once this change has been detected, and when the scale

has returned to a no-motion condition, the application captures the next axle weight. This process is repeated until all the axles are captured. The transaction concludes (Figure 6-25) when the application saves it, and prompts the operator to press print.

Figure 6-25: Concluding a Manually Controlled Transaction

Gross Mode Operation

If a larger scale platform is being used for both axle weighing and smaller trucks, a gross weight can be captured and printed on a ticket with the Axle-780.

- In Manual Mode, after the first axle (i.e., the entire truck) is weighed, press **No** when the "Another Axle?" prompt appears.
- In Automatic Mode, the transaction will complete once the truck has exited the scale and the Exit Timer has expired.

In both modes, the transaction will be stored in the Transaction Table as a normal Axle transaction. However, the Gross Weight and Axle 1 will show the same value.

Figure 6-26 shows an example of a transaction ticket printed from the Gross Mode operation.

30/Mar/2007 16:17:37				
Transaction: 56				
ID: MTWT1				
Gross: 44960 1	b			

Figure 6-26: Gross Mode Transaction Ticket

Appendix A **Default Settings**

Setup Parameters

Table A-1 lists default values for all IND780 settings that are specific to the Axle-780. Default settings for IND780 basic functionality are listed in Appendix B of the IND780 Technical Manual, **Default Settings**.

Access to items in the Axle-780 configuration screens is determined by the application's own password control. Access to other configuration screens (Discrete I/O, Templates and Connections) is the same as for the standard IND780.

Setup Feature	Default Value			
Application – Task Expert – Axle Setup – General				
Mode	Automatic			
ID Input	None			
Overload Check	Disabled			
Gross Threshold	80000			
Axle 1 Threshold	12000			
Axles 2-12 Threshold	34000			
Application – Task Expert – Axle Setup – Traffic Control				
Control Type	None			
Enter Idle State	Green/Up			
Exit Idle State	Green/Up			
Threshold	1000			
Excursion	1000			
Zero Tolerance	500			
Manual Control	Disabled			
Application – Task Expert – Axle Setup – Timer Control				
Excursion Timer	3			
Exit Timer	9			
Zero Time Delay	5			

Table A-1: IND780 Axle-780 Default Settings

IND780axle and Axle-780 Application Software Technical Manual

Setup Feature	Default Value		
Light Timer	2		
Print Timer	120		
Application – Task Expert – Axle Setup – Discrete I/O			
Discrete I/O	Local		
Application – Task Expert – Axle Setup – Password			
Login Password	Disabled		
New Password	[null]		
Confirm Password	[null]		
Application – Discrete I/O – Outputs			
Discrete Outputs	Eight Local and Remote outputs as defined in Chapter 3.0, Configuration		
Communication – Templates – Output			
Template 2	Refer to Table A-2 for format		
Template 3	Refer to Table A-3 for format		
Communication – C	Connections		
Port	COM1		
Assignment	Demand Output		
Trigger	Trigger 1		
Template	Template 2		
Port	COM1		
Assignment	Demand Output		
Trigger	Trigger 2		
Template	Template 3		

Output Templates

For clarity, carriage return/line feed (CR/LF) elements have been omitted from the tables below. These templates may be accessed in the IND780 in setup at Communication > Templates > Output.

Output Template 2

Output Template 2 is modified for use by the Axle-780 application. It is defined as shown in Table A-2. Examples of printed outputs from this template may be found in Chapter 4, Automatic Mode Weighing.

Note: [nn] means that the output for this element is left-aligned and nn characters in length.

Template 2				
Element	Data	Printed output	Format	
1	ak0119	*DUPLICATE* [Prints if print is a duplicate]	[20]	
3	ak0121	*OVERLOAD VIOLATION* [Prints if violation condition detected]	[20]	
5	xd0103	Current date	Default	
7	xd0104	Current time	Default	
10	String	Transaction:	Default	
11	ak0101	Transaction number	[10]	
14	String	ID:	Default	
15	ak0102	Transaction ID	[20]	
18	String	Axle 1:	Default	
19	ak0107	Axle 1 weight	[10]	
20	ak0123	O/L [Prints if axle 1 overload detected]	[10]	
22	String	Axle 2:	Default	
23	ak0108	Axle 2 weight	[10]	
24	ak0124	O/L [Prints if axle 2 overload detected]	[10]	
26	String	Axle 3:	Default	
27	ak0109	Axle 3 weight	[10]	
28	ak0125	O/L [Prints if axle 3 overload detected]	[10]	
30	String	Axle 4:	Default	
31	ak0110	Axle 4 weight	[10]	

Table A-2: Default Template Definition, Output Template 2

IND780axle and Axle-780 Application Software Technical Manual

Template 2				
Element	Data	Printed output	Format	
32	ak0126	O/L [Prints if axle 4 overload detected]	[10]	
34	String	Axle 5:	Default	
35	ak0111	Axle 5 weight	[10]	
36	ak0127	O/L [Prints if axle 5 overload detected]	[10]	
38	String	Axle 6:	Default	
39	ak0112	Axle 6 weight	[10]	
40	ak0128	O/L [Prints if axle 6 overload detected]	[10]	
42	String	Axle 7:	Default	
43	ak0113	Axle 7 weight	[10]	
44	ak0129	O/L [Prints if axle 7 overload detected]	[10]	
46	String	Axle 8:	Default	
47	ak0114	Axle 8 weight	[10]	
48	ak0130	O/L [Prints if axle 8 overload detected]	[10]	
50	String	Axle 9:	Default	
51	ak0115	Axle 9 weight	[10]	
52	ak0131	O/L [Prints if axle 9 overload detected]	[10]	
54	String	Axle 10:	Default	
55	ak0116	Axle 10 weight	[10]	
56	ak0132	O/L [Prints if axle 10 overload detected]	[10]	
58	String	Axle 11:	Default	
59	ak0117	Axle 11 weight	[10]	
60	ak0133	O/L [Prints if axle 11 overload detected]	[10]	
62	String	Axle 12:	Default	
63	ak0118	Axle 12 weight	[10]	
64	ak0134	O/L [Prints if axle 12 overload detected]	[10]	
67	String	Gross:	Default	
68	ak0105	Total gross weight	[10]	
69	wt0103	Weight units		
70	ak0135	O/L [Prints if any gross overload detected]	[10]	
73	- End -			

Output Template 3

Output Template 3 is also modified for use when the Axle-780 application is in Gross Mode. It is defined as shown in Table A-2. An example of the printed output from this template may be found in Chapter 6, Advanced Applications.

Template 3				
Element	Data	Printed output	Format	
1	ak0119	*DUPLICATE* [Prints if print is a duplicate]	[20]	
3	ak0121	*OVERLOAD VIOLATION* [Prints if overload violation detected]	[20]	
5	xd0103	Current date	Default	
7	xd0104	Current time	Default	
10	String	Transaction:	Default	
11	ak0101	Transaction number	[10]	
14	String	ID:	Default	
15	ak0102	Transaction ID	[20]	
18	String	Gross:	Default	
19	ak0107	Axle 1 weight [i.e., whole vehicle in gross mode]	[08]	
20	wt0103	Weight units	[04]	
21	ak0123	O/L [Prints if gross overload detected]	[10]	
24	- End -			

Table A-3: Default Template Definition, Output Template 3

1900 Polaris Parkway Columbus, Ohio 43240

METTLER TOLEDO® is a registered trademark of Mettler-Toledo, Inc. ©2007 Mettler-Toledo, Inc.

64061176